Immuno-oncology:

New possibilities in the fight against cancer

João Gonçalves, PharmD, PhD

Faculdade Farmácia Universidade de Lisboa iMed – Research Institute of Medicines

Disclosures

Part of the speakers's bureau at Merck Sharp Dohme, Pfizer and Abbvie

I have divested from relationship with these companies

Quizz Questions

1) Immunotherapy aims to boost immune activation against tumors by inhibition of anergic signals driven by CTLA-4 and PD-L1?

2) Expression of PD-L1 in immune cells is predictive of response to inhibitors of immune-checkpoints?

3) Adverse events to immunomodulator antibodies result from immunemediated reactions and appear in the first two weeks of treatment?

History of Cancer Immunotherapy: Key Milestones Pembrolizumab and Atezolizumab IFN-α as adiuvant nivolumab approved for approved for Discovery of dendritic cell^[1] advanced urothelial carcinoma^[16] therapy for melanoma^[2] advanced melanoma^[10,11] Discovery of checkpoint inhibitors^[5-7] BCG approved **Tumor-specific** for bladder Nivolumab First immunotherapy Nivolumab cancer monoclonal Abs approved for prostate cancer (sipuleucel-T)^[8] approved for HL^[17] approved for RCC^[15] Adoptive T-cell immunotherapy 2016 1970s 2015 1990s 2000s 2014 1980s 2011 IL-2 approved for RCC and Nivolumab Atezolizumab Immune component First checkpoint approved for NSCLC^[12,13] granted inhibitor (ipilimumab) approved for advanced melanoma (US)[3,4] to spontaneous Priority Review for PD-L1+ NSCLC regressions in melanoma First tumor-associated antigen melanoma^[9] Pembrolizumab cloned (MAGE-1) approved for PD-L1+ NSCLC^[14] Slide credit: clinicaloptions.com

Immunogenic cancers are a focus in cancer immunotherapy research

Genomic Signature Links to T Cell Infiltrates in Tumors

Madhavan S, et al. Front Genetics. 2013;4:236.

Interferon alfa and Immune cell activation

- Promotes activity of B cells, T cells, macrophages, and dendritic cells
- Increases expression of Fc receptors
- Approved for treatment of cancer for more than 10 years
- Currently indicated for malignant melanoma, follicular lymphoma, hairy-cell leukemia, Philadelphia-positive chronic myeloid leukemia, condylomata acuminata, AIDS-related Kaposi's sarcoma
- Intolerable for some patients because of significant adverse effects

Interleukin-2 and T-cell activation

- IL-2
 - T-cell growth factor
 - Currently indicated for RCC malignant melanoma
 - Not very robust at inducing tumor responses, but effective at maintaining responses
 - Produces significant adverse effects, including capillary leak syndrome, hypotension, and mental status changes

McDermott DF, et al. J Clin Oncol. 2005;23:133-141.

If the Immune System Is so Potent, Why Do People Get Cancer?

- Cancers look like "self"
 - Cancers are shaped by the host microenvironment.
- Tumors actively defeat the host immune response.

Mare .	. IW	1,000	- 27	30	19	194	26	-39	41	347	- 121	1.45	1.121	- 0	- 40	-374	AT.	394	318	20	- 49	Cript	-	26		T.	101	779
Parent	(under statut must	1 1 1	1	į	1	1	!	ł	1	ļ	ł	1	ļ	<i>†</i> 1	1	1	1.	i	ł	ł	1	1	1	İ	1	:1:	1	1
		0.01	NAMES AND ADDRESS OF	matter Savg	3900	ä	ALC: NO.	Connot	Nacitalism.	- unit	đ	and spine	Breast-	factors.	Ally shine	Shipharoft	participated in the	Outlin	Gotterne,	dano.	080	watered.	Climent	Explosion in	Tiowoff.	Riader.	Int International	and spinster in the

Multiple Mechanisms of Immune Escape

The Immune System Is All About "Checks and Balances"

IL = Interleukin; TNF = tumor necrosis factor; TGF = transforming growth factor. DeNardo et al, 2010.

Tumor-Derived Immune Suppression

- Systematic studies have identified multiple mechanisms cancers employ to defeat the immune response
- Goal: therapy strategies that "liberate" underlying anticancer immune responses
- Immune checkpoints not even in the picture in 2008!

Weiner LM. N Engl J Med. 2008;358:2664-2665.

CTLA-4 Blockade and sustained T-cell activation (Ipilimumab, Tremelimumab)

- ✤ Single-agent activity
 - RR = 15%–20%
- Regressions = durable
- Regressions = delayed
- ✤ Grade III/IV SAE = 10%-15%
 - Colitis
 - Hypophysitis

T-Cell Response: Accelerate or Brake?

CTLA-4 and PD-1/PD-L1 Checkpoint Blockade for Cancer Treatment

10

PD-1 Blockade: Results in Increased CD8 T Cells in Tumors

8-wk Post Dose 3

4-wk Post Dose 3

Pre-Rx

4-wk Post Dose 1

Rx = treatment. Brahmer et al, 2010

Clinical Development of PD-1/PD-L1 Immune Checkpoint Inhibitors

Target	Antibody	Molecule	Approval/Development Stage		
	Nivolumab	Fully human IgG4	Phase I/II/III multiple tumors Approved: melanoma, NSCLC, RCC, cHL Breakthrough Therapy: HNSCC		
PD-1	Pembrolizumab	Fully human IgG4	Phase I/II/III multiple tumors Approved: NSCLC/melanoma Breakthrough Therapy: cHL/mCRC		
	Pidilizumab (CT-011)	Humanized IgG1	Phase I/II multiple tumors		

ClinicalTrials.gov.

PD-1 and PD-L1 as biomarkers for cancer therapy

TUMOR CELLS AND TUMOR-INFILTRATING IMMUNE CELLS BOTH EXPRESS PD-L11,2

PD-L1 expression detected in immunohistochemistry staining of lung cancer tumor³

The Manufact of the Internet

PD-L1 Expression on Tumor-Inflitrating Immune Cells

PD-L1 expression on macrophages detected in immunofluorescence staining of lung cancer tumor³

PD-L1 expression by cancer type

CANCER TYPE	PERCENTAGE POSITIVE FOR PD-L1 EXPRESSION ^{1*}	PRESENCE OF TUMOR INFILTRATING IMMUNE CELLS ^{7-21†}
Melanoma	40%-100%	10
Non-small cell lung cancer	35%=95%	~
Nasopharyngsal	68%-100%	**
Bioblastomarmixed glioma	100%	~
Colon adenocarcinoma	53%	
Hepatocellular carchoma	45%-05%	**
Grothelial/bladder	28%~100%	**
Multiple myeloma	93%	**
Ovarian	33%-80%	×**
Gastric carcinoma	42%	×°
Esophageat	42%	**
Paricreatic	39%	**
Renal cell carcinoma	15%-24%	✓ 20
Breast	31%-34%	**
(ymphomas	1790-941%	**
Leukernias	11%-42%	

Phase II IMvigor210 at ASCO 2016: **Atezolizumab in Urothelial Carcinoma**

- 2-cohort study in metastatic or locally advanced urothelial carcinoma
- *Cohort 1*: no chemotherapy for metastatic disease^[1]
- Cohort 2: prior platinum-based chemotherapy $(N = 310)^{[2-4]}$

Atezolizumab FDA approved in May 2016 for the treatment of locally advanced or metastatic urothelial carcinoma with progression during or following platinum chemotherapy

^{1.} Balar AV, et al. ASCO 2016. Abstract LBA4500.

^{2.} Dreicer R, et al. ASCO 2016. Abstract 4515.

Rosenberg JE, et al. Lancet. 2016;[Epub ahead of print]. Rosenberg JE, et al. ASCO 2016. Abstract 104.

PD-L1 Expression on Immune Cells: Predictive Marker for Response to Atezolizumab

IHC Status of Treated Pts in IMvigor210 Study (N = 311)

IMvigor210: Change in Tumor Burden by PD-L1 Subgroup

Pts without <u>postbaseline</u> tumor assessments included those who discontinued before the first tumor assessment and are not plotted. Several pts with CR had < 100% reduction due to lymph node target lesions. All lymph nodes returned to normal size per RECIST v1.1.

Hoffman-Censits JH, et al. ASCO GU 2016. Abstract 355.

IMvigor210: OS Associated With PD-L1 Expression on Immune Cells

Rosenberg JE, et al. Lancet. 2016;387:1909-1920.

Reprinted from Immunity 39(1). Chen DS, et al. Oncology meets immunology: the cancer-immunity cycle. p. 1-10. Copyright 2013, with permission from Elsevier.

Immune-Related AEs due to total envolvement of immune system

- Self-reactive T cells may proliferate when immune homeostasis or immune tolerance is disrupted
- Self-reactive T cells may react with normal tissue

irAEs: Mechanism of Action

- "Achilles heel" of checkpoint inhibitors: autoimmunity via irAEs
- Unique toxicities of immunomodulators caused by dysregulation of the host immune system, similar to autoimmune disease

Immune-Related AEs With Immunotherapy

irAEs: Considerations for Therapy

- Dose dependent
- Most irAEs develop during initial dosing period
 - Median time to onset: 5-9 wks
- Major categories of irAE associated with checkpoint inhibitors
 - Dermatologic
 - Gastrointestinal
 - Endocrine
 - Hepatic

- Graded by severity (CTCAE): 1 (mild) through 5 (death)
- Correlation between development of irAEs and treatment response
- Generally managed with use of corticosteroids or other immunosuppressive medications

Michot JM, et al. 2016 Eur J Cancer. 54:139-148.

irAE Comparison: Ipilimumab and Nivolumab

Difference in irAE incidence may be related to different sites of action

irAE Category (All Grades), %	lpilimumab ^[1]	Nivolumab ^[2]
Dermatologic	43.5	37.4
Gastrointestinal	29	17
Endocrine	7.6	7.3
Hepatic	3.8	3.4
Pulmonary	Not reported	1.5

1. Hodi F, et al. N Engl J Med. 2010;363:711-723. 2. Robert C, et al. N Engl J Med. 2015;372:320-330.

Combination Immunotherapy: irAEs

Treatment-Related AEs,	lpilimumab - (n =	⊦ Nivolumab 94)	lpilimumab + Placebo (n = 46)				
70	All Grades	Grade 3/4	All Grades	Grade 3/4			
Any tx-related AE	91	54	93	24			
Immune-related AEs							
 Dermatologic 	71.3	9.6	58.7	0			
 Gastrointestinal 	51.0	21.3	37	10.9			
 Endocrine 	34.0	5.3	17.4	4.3			
 Hepatic 	27.7	14.9	4.3	0			
 Pulmonary 	11.7	2.1	4.3	2.2			
 Renal 	3.2	1.1	2.2	0			

Postow MA, et al. N Engl J Med. 2015;372:2006-2017.

General Toxicity Management of Immune-Mediated Adverse Events

Grade	Recommendation
1 (mild)	Supportive care; may or may not withhold therapy
2 (moderate)	Withhold therapy; may consider restarting therapy in future if resolves to grade ≤ 1 Low-dose corticosteroids (prednisone 0.5 mg/kg/day or equivalent) given if symptoms do not resolve in 1 wk
3-4 (severe)	Discontinue therapy Use high-dose corticosteroids (prednisone 1-2 mg/kg/day or equivalent) tapered SLOWLY over ≥ 1 mo once toxicity resolves to grade ≤ 1
	over ≥ 1 mo once toxicity resolves to grade ≤ 1

Will Steroids Make the Immunotherapy Stop Working Against Cancer?

 Studies suggest that immune suppression (eg, steroids) combats immune-mediated adverse reactions but does not reverse the antitumor effect of immune checkpoint agents

Troy ZH, et al. J Clin Oncol. 2015;33:3193-3198.

Restarting Therapy After Treatment for Immune-Mediated Adverse Reaction

- Therapy can often be restarted after resolution of a grade 1-2 toxicity
- Permanent discontinuation of therapy often required in the case of a grade 3-4 toxicity
- The antitumor activity of immuno-oncology medications may persist long after drug discontinuation

Key Takeaways for immunemediated adverse reactions

- Autoimmunity has been associated with improved outcome in studies of some immune-based treatments
- Autoimmunity induced by current immune-based therapies is self-limited once the treatment has been discontinued
 - If toxicity not life-threatening, consideration may be given to reinstituting therapy once symptoms have resolved
- If the autoimmune toxicities are mild, symptoms can be managed medically while the patients remain on treatment
- Autoimmune adverse events may occur at anytime in the course of treatment

Patient Question: What Can I Do to Mitigate the Risks of Side Effects?

- Cannot yet predict who will experience immune-mediated adverse reactions
- Reduce alcohol intake
- Avoid foods that are known to potentially cause stomach upset (eg, foods that are past expiration date, left out, too much fiber, too much grease)
- Report symptoms promptly!

Patient Education on Novel Therapies

- Unique MOA and time to response
- Toxicity profiles differ from standard chemotherapy
 - Early recognition of irAEs essential
 - irAEs infrequent, treatable, and respond well to steroids
 - Whom and when to call for AEs
 - These new therapies are helping many people
- Reinforce teaching points at every point of contact
 - Notify healthcare team if the pt is admitted to another hospital

Quizz Questions and Answers

1) Immunotherapy aims to boost immune activation against tumors by inhibition of anergic signals driven by CTLA-4 and PD-L1.

Answer: Yes

2) The expression of PD-L1 in immune cells is predictive of response to inhibitors of immune-checkpoints.

Answer: Yes

3) Adverse events to inhibitors of immune-checkpoints result from immunemediated reactions and appear in the first two weeks of treatment.

Answer: No

Take Home Messages

- Immune checkpoint inhibitors are a new standard of care for patients with cancer
- Assessing PD-L1 expression can provide information on potential efficacy for certain patient subsets
- The development of autoimmune phenomenon may be an expected toxicity associated with some immune-based therapies

Thank You/Obrigado joao.goncalves@ff.ul.pt

Faculty of Pharmacy at University of Lisbon - Portugal

FATHER THREE THE COMPLETE

-