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Questions:
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› Population PK is the description of the PK of an 

individual in a population. Yes (red) or No (green)

› Non-compartment analysis is suitable to study the 

influence of physiological changes on the of behaviour 

of the drug. Yes (red) or No (green)

› PK curves of healthy volunteers are aimed at model 

identification (red) or identification of interindividual 

variability (green)

Typical data in an individual PK curve
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Non-compartmental 
pharmacokinetic 
analysis

Advantage:

-Simple

Disadvantage:

- Only descriptive

- Not suitable for study of the 

influence of physiological 

changes on the of behaviour 

of the drug
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Compartmental 
pharmacokinetic 
analysis

Advantage:

- Can be used for 

mathematical modelling in 

other doses and patients

Disadvantage:

- Requires mathematical and 

physiological understanding

-Requires software

-Takes more time
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Population Pharmacokinetics is

› A description of pharmacokinetic behaviour of a drug 

in a population

› Using a pharmacokinetic model, describing the 

typical relationships between physiology and 

pharmacokinetics

› A description of the interindividual variability in these 

relationships

› Using a statistical model for parameter distribution 

and error

Statistical Model:

-Between subject 

variability

-Between 

occasion 

variability

-Residual error

Mixed effects model

Structural 

model:

-Number of 

compartments

Covariate model:

-Descriptor for V

-Descriptor for CLFixed effects Random effects
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Population modeling allows you to:

› Find interindividual characteristics on PK 

› Covariates like renal function, pharmacogenetics

› Find interoccasion or intraindividual variability

› Bioavailability, alterering renal function

› Find other sources of error

› Model misspecification

› Define MAP Bayesian parameter estimation

› for dose adjustment in individual patient (TDM)
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Model parameters

› Model parameters

• Measure of central tendency (‘mean value’)

• Measure of inter-individual variability (‘sd’)

• Covariance between parameters (often ignored!)

• Assessment of covariates
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CL = CLm + fr . CLcr
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Parameter distribution

› Parametric methods require assumptions, e.g.

• normal distribution

• log-normal distribution

› Nonparametric methods
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Data (measurements)

› Rich data

› Sparse data
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Rich data

› Large number of blood samples from each subject

› Small number of subjects

› Experimental environment

› Healthy volunteers

› Aim: model identification
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Sparse data

› Small number of blood samples from each patient

› Large number of subjects

› Clinical environment

› Patients

› Aim: Identification of model parameters and 

covariates for TDM
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Methods

› Naive pooling

› Standard Two-Stage (STS)

› Mixed-Effect modeling (eg: NONMEM)

› Nonparametric methods (eg: NPEM)

› Iterative Two-Stage Bayesian (ITSB)
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Naive Pooling

› Data of all patients pooled

› Inter-individual variability ignored

› No information on inter-individual variability obtained
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Standard Two-Stage (STS)

Step 1

Data of each patient analysed separately

Step 2

Mean and SD of model parameters calculated from 

results of step 1
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Standard Two-Stage (STS)

+

• Conceptually and computationally simple

–

• Inter-individual variability overestimated

• Not applicable to sparse data

• Problems with ‘non-fittable’ patients
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Mixed-Effect Modeling

+

• Statistically sophisticated

• Generally accepted (FDA)

• Inter- and intra individual variability estimated

• Rich and sparse data

–

• ‘Black box’
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Iterative Two-Stage Bayesian

› Prior knowledge of parameter distribution is needed 

to estimate posterior distribution

› Assume a reasonable set of population data (e.g. 

from STS)

• means ± sd

• covariance matrix (usually zero)

• residual error (e.g. assay error pattern)
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Iterative Two-Stage Bayesian

› Step 1:  Perform Bayesian analysis on each subject 

separately

› Step 2:  Calculate new set of population data

• means ± sd

• covariance matrix

• residual error 
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Iterative Two-Stage Bayesian

› Repeat step 1 and step 2 until convergence is 

reached, i.e.

stable values for:

• means ± sd

• covariance matrix

• residual error 
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Iterative Two-Stage Bayesian

+

• Conceptually and computationally simple

–

• Results may be less precise and/or less 

accurate for sparse data
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Questions:
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› Population PK is the description of the PK of an 

individual in a population. Yes (red) or No (green)

› Non-compartment analysis is suitable to study the 

influence of physiological changes on the of behaviour 

of the drug. Yes (red) or No (green)

› PK curves of healthy volunteers are aimed at model 

identification (red) or identification of interindividual 

variability (green)
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