

Therapeutic Drug Monitoring of Antibacterials

Prof. dr. Daniel J. Touw

University Medical Center Groningen and University Centre for Pharmacy, Dept. of Pharmacokinetics, Toxicology and Targeting Groningen, The Netherlands

No conflicts of interest to report.

Questions:

- What is the most important PK parameter for the first dose? Clearance (red) or Volume of distribution (green)?
- How long is the Post Antibiotic Effect or Post MIC Effect of an aminoglycoside? 2 hours (red) or 7 hours (green)?
- > What is the most appropriate level for aminoglycoside clearance? 24-h level (red) or 12-h level (green)?

rijksuniversiteit groningen

Outline presentation

- > Case
- > PK-PD principle
- > Optimal sampling
- > General approach for TDM

Case

- Patient (male, 64 years, 70 kg, serum creat 80 micromol/L) has an infection and must be treated with tobramycin
- Physician asks you:
 - Starting dose
 - Dosing interval
 - · When to draw samples

You need

- > Knowledge on PK/PD relationship for this antibiotic
- Knowledge of physiologic factors on PK for this antibiotic

For optimal dosing you need to integrate pharmacodynamics and pharmacokinetics

Back to the case

- General starting points:
 - MIC (tobramycin): 1,5 2 mg/L
 - For recovery from tobramycin induced renal toxicity C_{min} must be >5 hrs <0,5 mg/L
- · What is the target for the peak concentration?
 - Calculate the dose.
- What is a safe dosing interval?

'A priory' dose regimen

- · Standard first dose is calculated on the basis of
 - V which is calculated from Population PK valued for Vd and adapted to individual patient data (confounders: weight, height, age, sex)
- · Dosing interval is calculated on the basis of
 - Individual estimation of clearance based on population value and confounders
 - Target value for trough level

Required data for the 'a priory' dose regimen:

- PK population parameters
 - Mean (Vd, CL, K12, K21)
 - standard deviation
- PK/PD determinants:
 - Peak/MIC (aminoglycosides)
 - AUC/MIC (vancomycin, fluorchinolones)
 - T above MIC (beta-lactam antibiotics)

Dose:

- MIC: max 2 mg/L
 - Optimal $C_{max} = 10 \times MIC$
 - Target C_{max} = 20 mg/L
- Volume of distribution: 0.25 0.4 L/kg
 - Dose: (0.25 to 0.4 L/kg) x 20 mg/L = 5 8 mg/kg (EUCAST advice 2016: 7 mg/kg)

rijksuniversiteit groningen umcg 151 (a) (b) **Dosing interval?** > Safe value for Cmin: 5-7 hrs <0,5 mg/L Lague cha per thigh PAE = 7.3 h -2 Time (h) int with S ATCC 25923 (a) 10813 (c) foile de 12.5 and 2 marks do

Craig, JAC 1993

ATCC 10013 (e) following a single 125 and 2 mig/lg does of orthorin, respectively, and with *K*, prevenues ATCC 4006 following a single 100 mg/lg does of arterois (b) and 8 mg/lg of primerical (d) likely point represents the mean \pm standard deviation (hard) of Sear to right thighs. The with of each box with hatded like represents the duration of time areas concentrations accorded the MIC. The duration of in-Wro PAE is shown by each ourse (0, correct), **6.** mean(b).

TDM schematic based on Bayes' principles:

When should you draw your samples?

Optimal sampling

- Why optimal sampling?
 - · To reduce the number of blood samples
 - Reduce costs
 - · Reduce burden and risk for the patient
- Which samples give the most information about the primary PK variables; Vd and clearance?

16

Volume of distribution:

The result of the measurement of a blood sample immediately drawn after administration of an i.v. drug is the most sensitive to changes in the Vd

Clearance:

The result of the measurement of a blood sample 1,44 x the half-life of a drug drawn after administration of an i.v. drug is the most sensitive to changes in the Cl

Practical protocol for tobramycin TDM

- Calculate 'a priori' dose based on BW
- Draw peak serum level 0.5 hrs after first dose
- Draw second level 1.44 x average t_{1/2} after first dose
- Analyse the samples, calculate most probable individual PK parameters using Bayesian software
- · Calculate next dose and dosing interval
- Repeat sampling

Questions:

- What is the most important PK parameter for the first dose? Clearance (red) or Volume of distribution (green)?
- How long is the Post Antibiotic Effect or Post MIC Effect of an aminoglycoside? 2 hours (red) or 7 hours (green)?
- > What is the most appropriate level for aminoglycoside clearance? 24-h level (red) or 12-h level (green)?

20

Literature

Hurst AK. Antimicrob Agents Chemother 1990; 34: 1165-1171. Bartal C. Am J Med 2003; 114: 194-198. Touw DJ. Clin Pharmacokinet 2009; 48: 71-88. Touw DJ. Ther Drug Monit 2005; 27: 10-17.