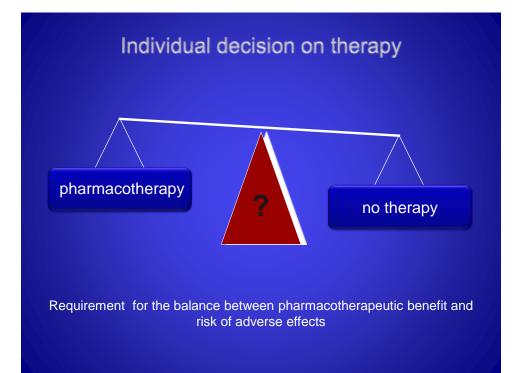
PATIENT SAFETY THROUGH INDIVIDUALISED THERAPY


Faculty of Pharmacy, Medical University of Bialystok, Poland

Faculty of Pharmacy, Medical University of Bialystok

Jerzy Pałka

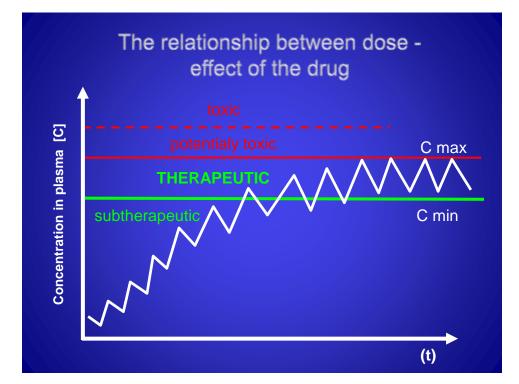
Declaration Conflict of interest: Nothing to disclose

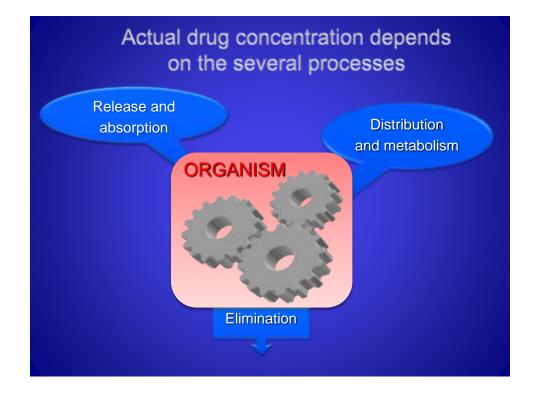
- Is molecular polymorphism of drugmetabolizing enzymes responsible for the rate of drug metabolism? Yes/No
- Is possible to evaluate pharmacokinetic profile of patient by genotyping? Yes/No
- Is genotyping invasive method for the patient? Yes/No

Rationalization of the pharmacotherapy

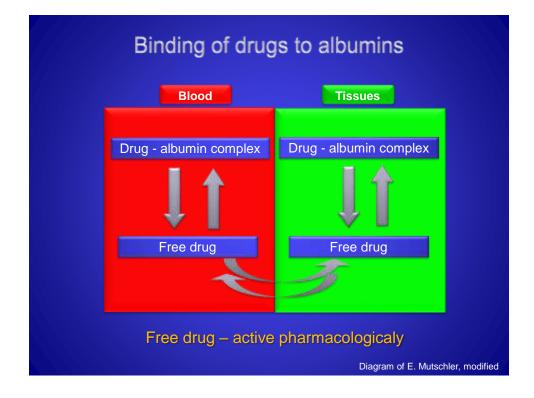
- 1. Simplify the treatment regimen
- 2. Minimize medication
- 3. Rate the possibility of drug-free treatment
- 4. First, consider the possibility of using drugs without a prescription
- 5. Start treatment with low doses of the drug
- 6. Monitor the effects of the drug

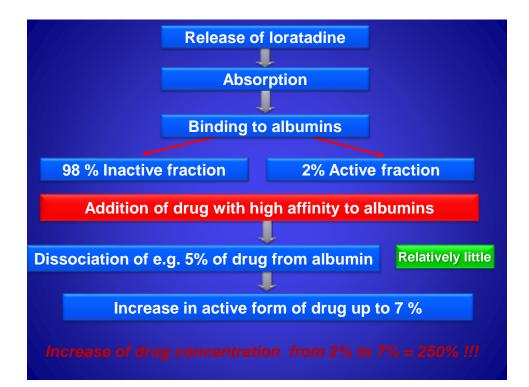
Biopharmaceutical Aspects of Pharmacotherapy





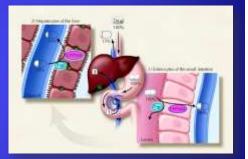
Effectivenees and Safety of pharmacotherapy depends on actual drug concentration in circulation and tissues



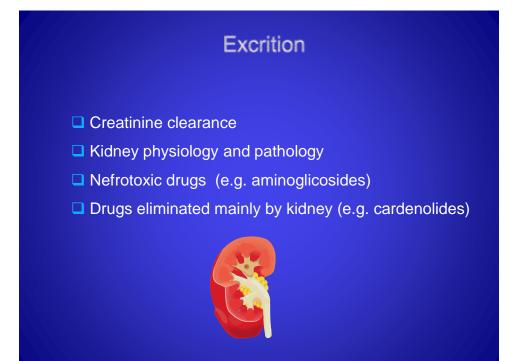


Absorption, distribution and binding to albumins

Absorption (way of administration, dosage form, physico-chemical properties, food)


- Distribution (flow rate of blood through the tissue, rate of transport through biological membranes, lipophilicity, binding to albumins)
- Metabolism (genetic factors, sex, age, pathology of organs, way of administration, interactions)
- Elimination/excretion (urine, bile, feces, saliva, sweat: depends on pH, blood supply, amount of tissue fat)


Metabolism


The effect of "the first pass" through the liver depends on functional state of the organ

Phase I of drug metabolism
Phase II of drug metabolism

Parameters that affect pharmacokinetics

	Parameter	Effects
Absorption	State of gastric mucosa intestinal motility Blood supply to the viscera enzyme secretion	Insufficient treatment per os
Distribution	Amount of plasma albumins Amount of fat in the body mass amount of water in the body mass	Ineffective treatment/adverse effects, changed volume of distribution of hydrophylic/lypophylic drugs
Metabolism	Blood flow through liver (decreases 0.3-1.0% every year after 25 year of age) cytochrom P450 activity (mainly CYP3A4, CYP1A2)	Adverse effects or ineffective treatment in case of drugs that require metabolic activation (e.g. taxanes, cyclophosphamid, anthracyclines, etoposide)
Excretion	Renal filtration (decreases GRF 1ml/min/year after 40 year of age), kidney mass	Affect plasma drug concentration and adverse effects. Requirement for correction of dose of drug depending on renal filtration

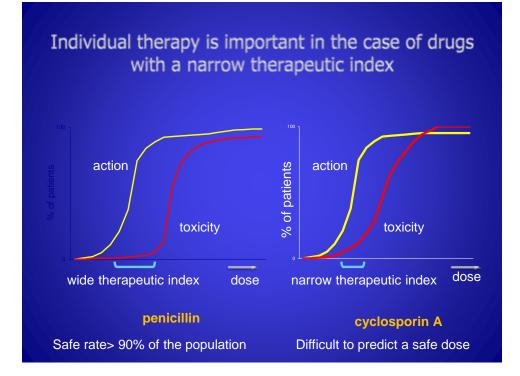
Polypragmasy/Polypharmacy: risks

Drug interactions

□ Ineffectiveness of therapy, adverse effects, toxicity

Weakness of "pharmacovigilance" Adverse effects, ineffectiveness of therapy, toxicity

Weakness of "compliance" Adverse effects, ineffectiveness of therapy, toxicity


Cancer Pharmacotherapy

Dose correction of chemotherapy according to renal filtration (Lichtman et al.)					
Chemothera-	Dose adjusted to renal filtration (creatinine clearance)				
peutic drug	90-60 ml/min	60-30 ml/min	30-15 ml/min	<15 ml/min	
ifosfamid (single dose)	*Daily dose (24h): 1,5-3 g/m2; dose per cycle: 5-10 g/m ²	-	-	Daily dose (24h): 1,13-2,25 g/m ² ; Dose per cycle: 3,75-7,5 g/m ²	
ifosfamid (infusion)	*Daily dose: 5-8 g/m ²	-	-	Daily dose: 3,75-6 g/m ²	
carboplatin	Adjustment according to formula by Calvert			vert	
cisplatin	50-120 mg/m ² every 3-6 weeks			contraindicated	
oksaliplatin	85 or 100 mg/m ² every 2 weeks or 130 mg/m ² every 3 weeks			contraindicated	
fludarabine (intravenous)	25 mg/m ² /day	20 mg/m ² /day	15 mg/m ² /day	15 mg/m ² /day	
metotrexat	30-50 mg/m ²	24-40 mg/m ²	15-25 mg/m ²	contraindicated	
* >15 ml/min	*>15 ml/min				

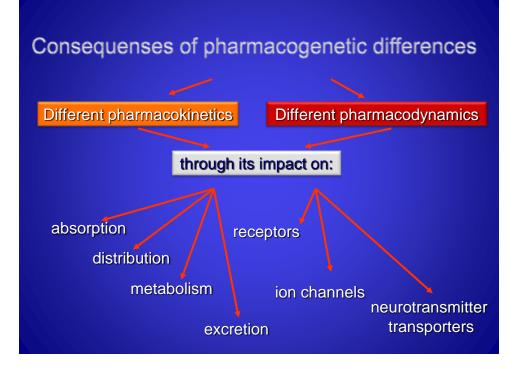
Chemothera- peutic drug	Dose adjus	sted to renal filtra	ation (creatinine	clearance)
	90-60 ml/min	60-30 ml/min	30-15 ml/min	<15 ml/min
Bisphosphonates				
ibandroniate	6 mg every 3-4 weeks	6 mg every 3-4 weeks	6 mg every 3-4 weeks	2 mg every 3-4 weeks
pamidroniate	90 mg every 4 weeks	90 mg every 4 weeks	contraindicated	contraindicated
zoledroniate	4 mg every 3-4 weeks	60-50 ml/min: 3,5 mg every 3-4 weeks; 50-40 ml/min: 3,3 mg every 3-4 weeks; 40-30 ml/min: 3 mg every 3-4 weeks		

Therapeutic drug monitoring (TDM), the optimal way to select an appropriate dose of drugs with a narrow therapeutic index, is indicated:

- In the case of drugs whose small changes in concentrations cause significant differences in the pharmacodynamic response
- When a slight decrease in the blood concentration reflects the ineffective therapy or if a small increase in concentration responsible for adverse reactions
- When 20% or less change in dose causes clinically significant and unexpected pharmacodynamic changes
- In the case of drugs characterized by at least 10-fold interindividual variability in the therapeutic range

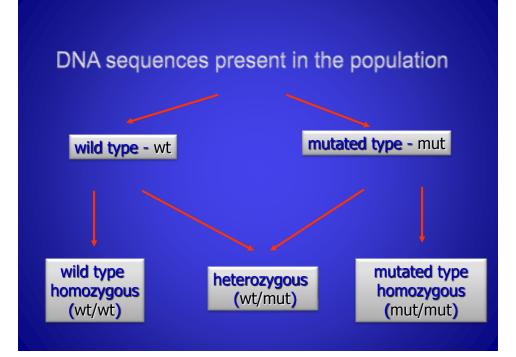
Most immunosuppressive drugs meet the above criteria!

- Benet LZ, Transpl Proc 1999 -

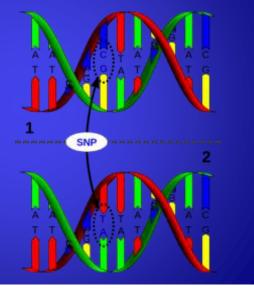

Pharmacogenetics or pharmacogenomics?

The influence of individual genes on pharmacotherapy

The impact of the entire genome for pharmacotherapy


□ Pharmacogenetics assesses the impact of a single gene on the effect of each drug

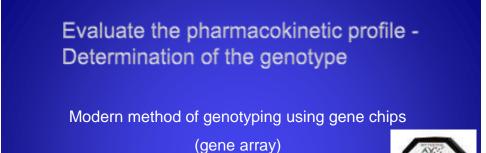
Pharmacogenomics examines the impact of the whole genome (all genes), the operation of each drug, as well as assess the impact of gene-gene interactions in medicine response


Molecular mechanisms of genetic polymorphism

- Single nucleotide mutations (Single Nucleotide Polymorphism - SNP)
- Mutation in the gene

Single Nucleotide Polymorphism (SNP)

A Single-nucleotide polymorphism is a DNA sequence variation occurring when a Single Nucleotide — A, T, C or G — in the genome (or other shared sequence) differs between members of a biological species or paired chromosomes

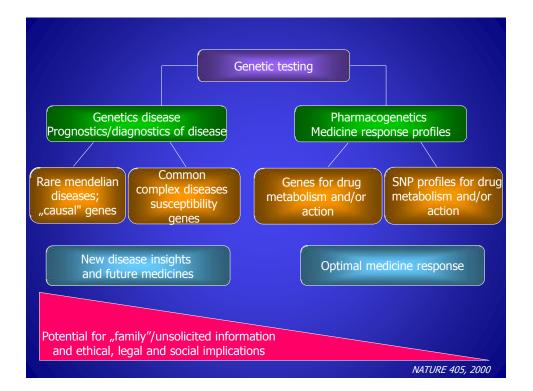

Evaluate the pharmacokinetic profile -Determination of the genotype

Frequently used:

the method of polymerase chain reaction (Polymerase Chain Reaction - PCR)

in combination with

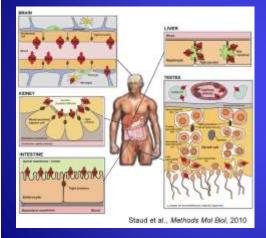
method of analysis restriction fragment length polymorphism (*Restriction Fragment Length Polymorphism* - RFLP)



allows the quickly determine:

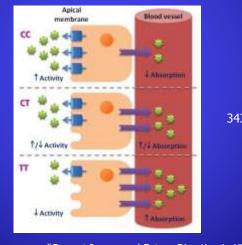
many mutations in one individual

one mutation in many subjects


原にいる

The role of genetics in drug absorption – P-glycoprotein

Expression, localization and function of ABC transporters



- P-gp is extensively distributed and expressed in:
- the intestinal epithelium,
- liver cells,
- the cells of the proximal tubular of the kidney,
- the capillary endothelial cells and blood-testis barrier

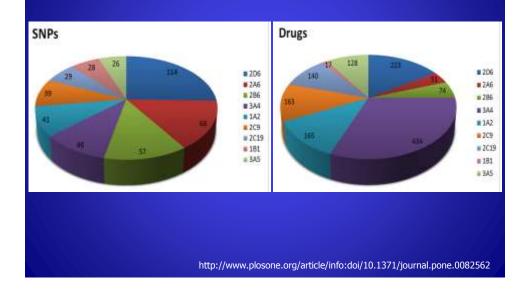
Examples of Glycoprotein P Substrates, Inhibitors and Inducers

Substrate	Inhibitor	Inducer
aliskiren	amiodarone	avasimibe
ambrisentan	azithromycin	carbamazepine
colchicine	captopril	phenytoin
digoxin	carvedilol	rifampin
everolimus	clarithromycin	St John's Wort
fexofenadine	conivaptan	tipranavir
imatinib	cyclosporine	ritonavir
lapatinib	diltiazem	
maraviroc	erythromycin	
nilotinib	felodipine	
posaconazole	itraconazole	
ranolazine	ketoconazole	
saxagliptin	lopinavir	
sirolimus	ritonavir	
sitagliptin	quercetin	
tacrolimus	quinidine	
toivaptan	ranolazine	
topotecan	verapamil	

Influence of the functional activity of glycoprotein-P (transporter in apical membrane) in the transport of tacrolimus (green stars) in the intestine epithelium

3435 TT variant

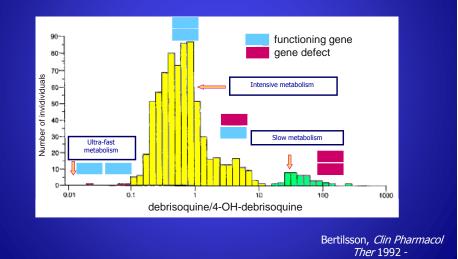
"Current Issues and Future Direction in Kidney Transplantation"

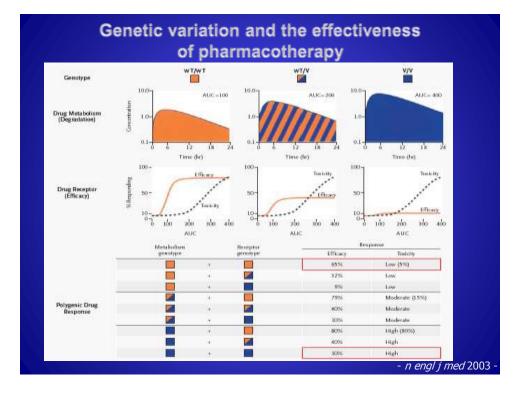

Effect of polymorphism on the transport and drug action				
Transporter or target	Drug	Effect		
ABCB1 (MDR1)	Digoxin, HIV protease inhibitors	↓ The bioavailability of digoxin, ↓ CD ₄ response in patients with HIV		
β_1 -adrenergic receptor	β_1 -antagonists	↓ Response of the cardiovascular system		
β_2 -adrenergic receptor	β_2 -agonists	\downarrow The ability of bronchodilation		
Serotonin transporter (5-HTT)	Fluoxetine	↓ Antidepressant action		

- NATURE, 2004 -

The role of genetics in drug metabolism – cytochrome P450

SNPs and cytochrome P450

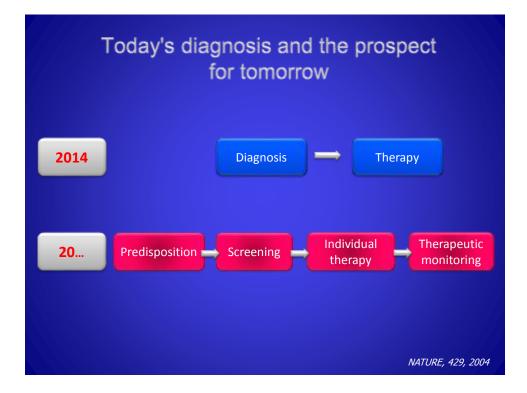

Examples of in vivo substrate, inhibitor, and inducer of specific CYP enzymes for evaluation (oral administration)


СҮР	Substrate	Inhibitor	Inducer
1A2	theophylline caffeine	fluvoxamine	smokers versus non-smokers
2B6	efavirenz		rifampin
2C8	repaglinide rosiglitazone	gemfibrozil	rifampin
2C9	warfarin tolbutamide	fluconazole amiodarone	rifampin
2C19	omeprazole esoprazole lansoprazole pantoprazole	omeprazole fluvoxamine moclobemide	rifampin

Examples of in vivo substrate, inhibitor, and inducer of specific CYP enzymes for evaluation (oral administration)

СҮР	Substrate	Inhibitor	Inducer
2D6	desipramine, dextromethorpha atomoxetine	paroxetine, an, quinidine, fluoxetine	none identified
2E1	chlorzoxazone	disulfirum	ethanol
3A4/ 3A5	midazolam, buspirone, felodipine, lovastatin, eletriptan, sildenafil, simvastatin, triazolam	atazanavir, clarithromycin, indinavir, itraconazole, ketoconazole, nefazodone, nelfinavir, ritonav saquinavir, telithromycin	rifampin, carbamazep ⁄ir,

Effect of CYP2D6 polymorphism on drug metabolism


Effect of polymorphism on the phase I metabolism

Metabolizing enzyme	The incidence of slow metabolizing phenotype	Drug	Effect of SNP
Cytochrome P 450 2D6 (CYP2D6)	6.8% of Swedes 1% of the Chinese	Codeine	↓ Therapeutic effect
Cytochrome P 450 2C9 (CYP2C9)	3% of the British	Warfarin Phenytoin	↑ Therapeutic effect
Cytochrome P 450 2C19 (CYP2C19)	2.7% of white Americans 3.3% of Swedes 14.6% of the Chinese 18% of Japanese people	Omeprazole	↑ Therapeutic effect
Dihydropyrimidine dehydrogenase	1% of the world's population is heterozygous	Fluorouracil	1 Therapeutic effect
Butyrylocholino- esterase (pseudocholino- esteraze)	1 on the 3500 Europeans	Succinylcholine	Therapeutic effect

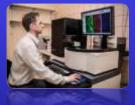
Effect of polymorphism on the phase II metabolism

Metabolizing enzyme	The incidence of slow metabolizing phenotype	Drug	Effect of SNP
N-acetyltransferase 2	52% of white Americans 17% of Japanese people	Isoniazid Hydralazine Procainamide	Therapeutic effect
Uridine diphospho- glucuronosyltran- sferases 1A1	10.9% of the population of white 4% of the Chinese 1% of Japanese people	Irinotecan Bilirubin	1 Therapeutic effect
S-thiopurine methyltransferase	1 in 300 white 1 2500 Asians	Mercaptopurine Azathioprine	↑ Therapeutic effect
Catechol-O- methyltransferase	25% of the white population	Levodopa	Therapeutic effect

- N Engl J Med., 2003 -

- Is molecular polymorphism of drugmetabolizing enzymes responsible for the rate of drug metabolism? Yes/No
- Is possible to evaluate pharmacokinetic profile of patient by genotyping? Yes/No
- Is genotyping invasive method for the patient? Yes/No

Contributors


Dr. Anna Tankiewicz-Kwedlo

Dr. Justyna Hermanowicz

Dr. Arkadiusz Surazynski

Proper answers to the questions

- 1. YES
- 2. YES
- 3. NO